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MATHEMATICAL MODELING OF THE MOTION OF A PORTION

OF HELIUM UNDER PULSED INJECTION OVER

A FIXED BED OF CENOSPHERES

UDC 621.031A. S. Vereshchagin,1 S. N. Vereshchagin,2 and V. M. Fomin1

A mathematical model is constructed and an analytical solution is obtained for the problem of a one-
dimensional steady flow of a mixture of different gases with hollow permeable particles. The case of
a one-dimensional unsteady flow of such a mixture is analyzed numerically. The numerical solutions
are compared with experimental data on the motion of the peak concentration of helium in a fixed bed
filled with cenospheres (solid hollow permeable spherical particles). The permeability of cenosphere
walls and the drag coefficient of cenospheres in the gas flow are determined.
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INTRODUCTION

In describing a system with a large number of particles, it is normally impossible to trace the motion of
each particle, because it complicates the mathematical formulation of the problem. Various methods are used to
reduce the number of independent variables, in particular, the probabilistic approach used in statistical physics.
This approach implies that there is a function taking into account the probability of particle residence at certain
points of space and the velocity of their motion, which allows correct averaging in space and time and obtaining
the basic conservation laws thereby.

Another (phenomenological) approach is based on averaging the main parameters in time and space. The
use of such a method is justified if the integral characteristics of the system rather than the characteristics of each
particle are determined.

We consider a system consisting of a mixture of gases and containing solid hollow spherical particles (further
called cenospheres), one of the gases being capable of penetrating into the cenospheres and going out of them.
A model of such a system within the framework of mechanics of multiphase media is constructed, e.g., in [1] with
the use of an approach proposed in [2]. Deriving of equations is based on the theory of interpenetrating continua,
which implies that each continuum (our problem involves four continua: two for the gases outside the cenospheres,
one for the permeable cenospheres, and one for the gas in the cenospheres) is described by its own parameters,
which are integral characteristics of the original system.

The following assumptions were used in deriving the mathematical model:
1) the size of the solid particles is much greater than the mean free path in each gas and much smaller than

the characteristic length of changing of macroscopic parameters;
2) cenospheres are hollow spherical particles of an identical diameter with a thin wall and have identical

physical properties;
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3) one of the gases can penetrate inside the cenospheres; hence, the mass flow rate of this gas through the
cenosphere shell is proportional to the difference in pressure inside and outside the shell;

4) the velocities and temperatures of the carrier gases outside the cenospheres coincide with each other;
5) the velocities and temperatures of the cenosphere shell and the gas inside the cenospheres are identical;
6) the gases are assumed to be ideal;
7) all parameters inside the cenospheres are uniform.
Using the approach developed in [2], we can write the system of equations

∂ρ11

∂t
+ div (ρ11v1) = −K,

∂ρ12

∂t
+ div (ρ12v1) = 0,

∂ρ21

∂t
+ div (ρ21v2) = K,

∂ρ22

∂t
+ div (ρ22v2) = 0,

∂ρ1v1

∂t
+ div (ρ1v1 × v1 + m1pI) = p∇m1 − f12 − Kv2,

∂ρ2v2

∂t
+ div (ρ2v2 × v2 + m2pI) = p∇m2 + f12 + Kv2,

(1)

∂U1

∂t
+ div [(U1 + m1p)v1] = −q12m2 − f12 · v2 − K

(
ε2 +

v2
2

2

)
− p

∂m1

∂t
,

∂U2

∂t
+ div [(U2 + m2p)v2] = q12m2 + f12 · v2 + K

(
ε2 +

v2
2

2

)
− p

∂m2

∂t
with the closing relations

ρ1ε1 = (ρ11C11 + ρ12C12)T1, ρ2ε2 = (ρ21C11 + ρ22Cs)T2,

m1 + m2 = 1, ρ22 = ρ0
22(1 − β3)m2.

Hereinafter,

p11 =
ρ11R1T1

m1
, p12 =

ρ12R2T1

m1
, p21 =

ρ21R1T2

m2
β3,

U1 = ρ1(ε1 + v2
1/2), U2 = ρ2(ε2 + v2

2/2),

ρ1 = ρ11 + ρ12, ρ2 = ρ21 + ρ22, p = p11 + p12,

K = Cm(p11 − p21)m2, f12 = CF
m2

m1

1
R2

(ρ11ν1 + ρ12ν2)(v1 − v2),

β = r/R,

t is the time, I is the unit tensor, ρ11 is the density of the gas capable of penetrating into the cenospheres, averaged
over the volume outside the cenospheres, ρ12 is the density of the gas that cannot penetrate into the cenospheres,
averaged over the volume outside the cenospheres, ρ21 is the volume-averaged density of the gas in the cenospheres,
ρ22 is the volume-averaged density of the cenosphere shell, v1 is the velocity of gas motion outside the cenospheres,
v2 is the velocity of cenosphere motion, T1 is the gas temperature outside the cenospheres, T2 is the temperature
of the cenospheres and the gas inside the cenospheres, m1 is the volume concentration of the gas outside the
cenospheres, m2 is the volume concentration of the cenospheres, ε1 and ε2 are the specific internal energies of the
first and second continua, respectively, ρ0

22 is the density of the cenosphere materials, r is the radius of the inner
cavity of the cenosphere, R is the cenosphere radius, Cm is the permeability of the cenospheres, CF is the drag
coefficient of the cenospheres in the gas flow, q12 is the heat flux between the phases, C11 and C12 are the thermal
conductivities of the gases capable and incapable of penetrating into the cenospheres, Cs is the thermal conductivity
of the solid material of the cenospheres, and ν1 and ν2 are the viscosities of the gases capable and incapable of
penetrating into the cenospheres, respectively.

System (1) is similar to the famous Euler equations. The difference lies in the right sides that take into
account the redistribution of mass, momentum, and energy between the continua. It should be noted that viscosity
is only used in determining the forces of interaction between the continua of the gas and cenospheres. In the general
case, the quantities Cm and CF are variable and are functions of other parameters of the medium, but they may
be assumed to be constant for a qualitative analysis of the phenomenon.
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1. ONE-DIMENSIONAL UNSTEADY MOTION

1.1. Mathematical Model. The mathematical model of this problem follows from the general system
of equations. The following additional assumptions are used: the motion is one-dimensional and unsteady, m2 =
1 − m1 = const, v2 = 0, and T1 = T2 = T = const. In the general case, these expressions cannot be substituted
into the original system, because the cenospheres are initially in a suspended state. In the problem posed, they are
fixed and motionless; therefore, we use only the laws of conservation of mass and momentum for the gas outside the
cenospheres from the original model. As a result, we obtain the following closed system of differential equations:

ρ21,t = Cm(p11 − p21)m2,

ρ11,t + (ρ11v1)x = −Cm(p11 − p21)m2, ρ12,t + (ρ12v1)x = 0, (2)

(ρ1v1)t + (ρ1v
2
1 + P )x = −CF

m2

m1

1
R2

+

(ρ11ν1 + ρ12ν2)v1.

Here

p11 = ρ11R1T/m1, p21 = ρ21R1T/(β3m2), P = ρ11R1T + ρ12R2T,

m1 + m2 = 1, ρ1 = ρ11 + ρ12,

ρ21 is the density of helium that entered the cenospheres, ρ11 is the density of helium outside the cenospheres, ρ12 is
the density of the gas outside the cenospheres, the physical parameters of the gas being essentially different from
helium parameters, v1 is the velocity of motion of the mixture, m2 is the volume concentration of cenospheres, R1

and R2 are the gas constants (the subscripts 1 and 2 refer to helium and the other gas), T is the temperature,
ν1 and ν2 are the viscosities of the gases, and R+ is the outer radius of the cenospheres.

1.2. Characteristics of the Mathematical Model. We determine the type of the mathematical
model (2). Developing the derivatives, we pass to the following system of differential equations:

ρ21,t = K, ρ11,t + v1ρ11,x + ρ11v1,x = −K, ρ12,t + v1ρ12,x + ρ12v1,x = 0,

v1,t +
1
ρ1

Px + v1v1,x =
(
K − CF

m2

m1

1
R2

+

(ρ11ν1 + ρ12ν2)
)v1

ρ1
.

(3)

Here

K = Cmm2

(ρ11

m1
− ρ21

β3m2

)
R1T, ρ1 = ρ11 + ρ12, P = ρ11R1T + ρ12R2T.

Thus, the system can be presented as

Ut + A(U)Ux = R(U),

where

U =

⎛
⎜⎜⎝

ρ21

ρ11

ρ12

v1

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

0 0 0 0
0 v1 0 ρ11

0 0 v1 ρ12

0 R1T/ρ1 R2T/ρ1 v1

⎞
⎟⎟⎠ ,

R =

⎛
⎜⎜⎜⎜⎝

K

−K

0(
K − CF

m2

m1

ρ11ν1 + ρ12ν2

R2
+

)v1

ρ1

⎞
⎟⎟⎟⎟⎠

.

We find the Jordan expansion of the matrix A:

A = rdl (l = r−1).

The eigenvalues are 0, v1, v1 − c, and v1 + c (c =
√

P/ρ1 is an analog of the velocity of sound for the mixture as a
whole).
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The sought expressions for r and l have the form

r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −R2

R1
−ρ11

c

ρ11

c

0 1 −ρ12

c

ρ12

c

0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 − R1ρ12

R1ρ11 + R2ρ12

R1ρ11

R1ρ11 + R2ρ12
0

0 − R1T

2
√

ρ1P
− R2T

2
√

ρ1P

1
2

0
R1T

2
√

ρ1P

R2T

2
√

ρ1P

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the case considered, the flow velocity is low (v1 < c), and the motion is assumed to be unidirectional.
Hence, there are two positive characteristics, one negative characteristic, and one zero characteristic. Thus, system
(3) is hyperbolic, though the full system (1) is presumably of a composite type [2].

2. ONE-DIMENSIONAL STEADY MOTION

2.1. Mathematical Model. In a steady-state case, the system is written as

p11 = p21, (ρ11v1)x = 0, (ρ12v1)x = 0,

(ρ1v
2
1 + ρ11R1T + ρ12R2T )x = −CF

m2

m1

1
R2

+

(ν1ρ11 + ν2ρ12)v1.

(4)

The solution of Eqs. (4) is sought for

ρ11

∣∣∣
x=0

= ρ0
11, ρ12

∣∣∣
x=0

= ρ0
12, v1

∣∣∣
x=0

= v0
1 .

Here ρ0
11, ρ0

12, and v0
1 are the densities and flow velocity at the point x = 0.

The case with x > 0 and v0
1 > 0 is of interest for the further study, and the solution for v0

1 < 0 is readily
obtained from the previous solution.

2.2. Qualitative Analysis of the Problem. In a steady case, the first integrals of system (4) have the
form

ρ11v1 = C1, ρ12v1 = C2,

α0v1 +
αRT

v1
= −CF

m2

m1

1
R2

+

ανx + C3.

Here α0 = C1 + C2, αR = C1R1 + C2R2, αν = C1ν1 + C2ν2, C1, C2, and C3 are constants:

C1 = ρ0
11v

0
1 , C2 = ρ0

11v
0
1 , C3 = (ρ0

11 + ρ0
12)(v

0
1)2 + (ρ0

11R1 + ρ0
12R2)T.

The relation p11 = p21 yields

ρ21 = β3m2ρ11/m1.

Let us demonstrate how this system with initial conditions can yield the solution of the Cauchy problem,
written in explicit form, and also indicate the mathematical criterion of solubility of this system in the case of a
finite length of the examined region (e.g., in the case of motion of a mixture of gases through a fixed bed filled with
cenospheres).

We write the law of conservation of momentum in a form most convenient for the further study:

α0(v1 − v0
1) + αRT (1/v1 − 1/v0

1) = −C′
F ανx

[C′
F = CF (m2/m1)/R2

+]. This relation is an implicit dependence v1(x). An explicit relation is obtained by solving
the quadratic equation with respect to v1. Another method of deriving this dependence is described below, which
allows a more detailed study of the flow.

378



xxc

v1

0

vc

v1
0

u1
0

x

v1

0

vc

Fig. 1 Fig. 2

Fig. 1. Dependence v1(x).

Fig. 2. Qualitative behavior of the subsonic branch of the dependence v1(x) for initial velocities
v0
1 = v1(0) < vc for one composition of the mixture.

Based on the above-given equation, we express x as a function of v1:

x = f(v1) = − 1
C′

F αν

[
α0(v1 − v0

1) + αRT
( 1

v1
− 1

v0
1

)]
.

We check whether the function f has extreme points, i.e., ∂f/∂v1 = 0 if and only if

v1 = vc =
√

αRT

α0
=

√
p0

ρ0
1

=
√

ρ11

ρ11 + ρ12
R1T +

ρ12

ρ11 + ρ12
R2T

(p0 and ρ0
1 are the pressure and the total density of the mixture of gases at the bed entrance). Note that the

constant quantity vc remaining unchanged along the bed is an analog of the velocity of sound for this mixture of
gases.

The following estimate can be readily obtained for vc. Let c1 =
√

R1T and c2 =
√

R2T be the velocities of
sound for the two gases used in the mixture. (We assume that c1 < c2; otherwise, the signs should be changed to
the opposite ones.) Hence, the following relation is valid:

c1 ≤ vc ≤ c2.

The closeness of the value of vc to one of the values of ci (i = 1, 2) depends on the initial composition of the mixture.
The qualitative dependence v1(x) is plotted in Fig. 1. Two types of flow are seen to be formed: 1) subsonic

flow for v1

∣∣∣
x=0

= v0
1 < vc; 2) supersonic flow for v1

∣∣∣
x=0

= u0
1 > vc. The second case is unphysical, because it

describes gas exhaustion from a region with a lower pressure to a region with a higher pressure (it follows from the
relation ρ11v1 = C1 and the pressure–density relation for an ideal gas).

In what follows, we consider mixtures with specified values of ρ0
11 and ρ0

12. Figure 2 shows the flow pattern
for one composition of the mixture with different initial velocities v0

1 .
For a prescribed initial composition of the mixture and velocities of gases at the bed entrance, we formulate

the condition of existence of the solution of a one-dimensional steady-state problem on passing of the gas mixture
through a fixed bed of cenospheres located on the segment [0, L]. It follows from Fig. 1 that such a flow is “blocked”
at the critical point x = xc. Thus, the criterion of existence of the steady-state solution has the form

xc = f(vc) ≥ L.

Substituting f into this expression, we obtain the inequality

|v0
1 − vc| ≥

√
C′

F ανLv0
1/α0.
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3. SOLUTION OF THE PROBLEM OF MOTION
OF THE HELIUM CONCENTRATION PEAK THROUGH A FIXED BED

Let us consider the following physical problem for verification of the mathematical model derived. A fixed
bed is filled with cenospheres, and an argon flow is initiated through the bed. Helium is supplied in a pulsed manner
to the bed entrance and is entrained by the argon flow in the downstream direction. In contrast to argon, helium can
easily penetrate into the cenospheres and leave them. The solution of this problem is necessary not only to verify
the mathematical model and refine some constants in the governing equations, but also to elucidate the possibility
of using cenospheres as a filter in the process of mixture enrichment by helium.

The equations that describe the motion of the gases in the fixed bed are given in Sec. 1. To integrate system
(3) numerically, we need to impose the initial and boundary conditions.

3.1. Initial Conditions. Let us assume that helium is not jet injected into the bed. In this case, the bed
filled with cenospheres contains a steady flow of the carrier gas, which is not adsorbed by these cenospheres. Let
us determine the profiles of velocity and density in the flow, based on the known gas pressure at the entrance and
exit of the fixed bed. In this case, system (4) acquires the form

(ρ12v1)x = 0,

(ρ12v
2
1 + ρ12R2T )x = −CF

m2ν2

m1

1
R2

+

ρ12v1,
(5)

where v1(x) and ρ12(x) are the sought functions.
The boundary conditions are

ρ12

∣∣∣
x=0

=
p0

R2T
, ρ12

∣∣∣
x=L

=
pa

R2T
, pa < p0,

where p0 and pa are the prescribed pressures at the bed entrance and exit, respectively.
Based on the volume gas flux F at the bed exit, we can determine the drag coefficient of the medium CF .

Let Ta be the ambient temperature, pa be the atmospheric pressure, and S be the cross-sectional area of the fixed
bed. Then

pa = ρ12v1SR2Ta/F.

Integrating the equations of the original system (5) with respect to x, we obtain

ρ12v1 = ρ0
12v

0
1 ,

ρ0
12v

0
1(v1 − v0

1) + R2T (ρ12 − ρ0
12) = −CF

m2

m1

ν2

R2
+

ρ0
12v

0
1x.

Here ρ0
12 and v0

1 are the density and velocity at x = 0.
It follows from the boundary conditions that

ρ0
12 = p0/(R2T ),

and the relation for the flow at the bed exit and the first integral yield the expression

ρ12v1 = ρ0
12v

0
1 = ρL

12v
L
1 = paF/(SR2Ta),

where ρ12(L) = ρL
12 and v1(L) = vL

1 . Hence, we obtain

v0
1 = paTF/(p0TaS).

Similarly, the velocity at the bed exit is described by

vL
1 = TF/(TaS).

From the second integral of system (5), we express CF through the known values of ρ12 and v1 at the domain
boundaries:

CF =
m1R

2
+

m2ν2L

[ T

Ta

F

S

(pa

p0
− 1

)
+ R2Ta

S

F

(p0

pa
− 1

)]
. (6)
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To obtain the values of the sought functions in the entire domain of motion, we have to resolve the second
integral of system (5) with the use of the dependences obtained. As a result, we obtain the equation for v1:

v2
1 +

{ T

Ta

F

S

[ x

L

(pa

p0
− 1

)
− pa

p0

]
+ R2Ta

S

F

[ x

L

(p0

pa
− 1

)
− p0

pa

]}
v1 + R2T = 0.

The first integral of system (5) yields

ρ12 = paF/(SR2Tav1).

Thus, knowing all initial data, we can obtain the initial velocity and density profiles.
3.2. Boundary Conditions. Let helium be supplied in a pulse at the time t = 0. In accordance with the

analysis in Sec. 1, the boundary-value problem has to be subjected to the initial condition at t = 0, two conditions
on the left boundary x = 0, and one condition on the right boundary x = L. In this case, we set the conditions for
pressure:

p11

∣∣∣
x=0

=
{

p0, t ≤ tc,

0, t > tc,
p12

∣∣∣
x=0

=
{

0, t ≤ tc,

p0, t > tc,
p11 + p12

∣∣∣
x=L

= pL.

Here p11 is the helium pressure outside the cenospheres, p12 is the pressure of the carrier gas, p0 is the carrier gas
pressure prescribed at the bed entrance, and pL is the pressure at the bed exit.

3.3. Numerical Integration of the Problem. We define two uniform grids on the segment [0, L]: with
values in integer nodes ω1

h = {x0 = 0, x1 = h, . . ., xN = L} and with values in fractional nodes ω2
h = {x1/2 = h/2,

x3/2 = 3h/2, . . ., xN−1/2 = L − h/2} (h is the step of the difference grid).
The functions ρ21, ρ11, and ρ12 are projected onto the grid ω2

h, and the function v1 is projected onto the
grid ω1

h.
The original differential equations, except for the equation

ρ21,t = CmR1T (m2ρ11/m1 − ρ21/β3),

can be written as
∂U

∂t
+ A(U)

∂U

∂x
= R(U).

Here

U =

⎛
⎝

ρ11

ρ12

v1

⎞
⎠ , A(U) =

⎛
⎝

v1 0 ρ11

0 v1 ρ12

R1T/ρ1 R2T/ρ1 v1

⎞
⎠ ,

R =

⎛
⎜⎜⎝

−K

0(
K − CF

m2

m1

ρ11ν1 + ρ12ν2

R2
+

)v1

ρ1

⎞
⎟⎟⎠

[K = CmR1T (m2ρ11/m1 − ρ21/β3)].
We identify the diagonal part in the matrix at the derivative with respect to x, i.e., we present the matrix

as the sum

A(U) = B(U) + v1I
′

(I ′ is a unit matrix of dimension 3 × 3). The numerical solution is sought as follows. At the first stage, we solve
the problem ∂U/∂t = G (G = R(U)−B(U) ∂U/∂x), where we find the values of the quantities at the intermediate
stage. At the second stage, we solve the problem ∂U/∂t + v1 ∂U/∂x = 0, where the values at the next time layer
are obtained through the values at the intermediate stage.

At the first stage, we have
ρ∗21,j+1/2 − ρn

21,j+1/2

τ
= Kn

j+1/2,

ρ∗11,j+1/2 − ρn
11,j+1/2

τ
= −Kn

j+1/2 − ρn
11,j+1/2

vn
1,j+1 − vn

1,j

h
,
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ρ∗12,j+1/2 − ρn
12,j+1/2

τ
= −ρn

12,j+1/2

vn
1,j+1 − vn

1,j

h
,

v∗1,j − vn
1,j

τ
= fn

j − 2T

ρn
1,j+1/2 + ρn

1,j−1/2

(
R1

ρn
11,j+1/2 − ρn

11,j−1/2

h
+ R2

ρn
12,j+1/2 − ρn

12,j−1/2

h

)
.

Here τ is the time step; the quantities marked by the superscript asterisk are parameters at the intermediate stage.
At the second stage, we obtain

ρn+1
21,j+1/2 = ρ∗21,j+1/2,

ρn+1
11,j+1/2 − ρ∗11,j+1/2

τ
+

v∗1,j + v∗1,j+1

2

ρ∗11,j+1/2 − ρ∗11,j−1/2

h
= 0,

ρn+1
12,j+1/2 − ρ∗12,j+1/2

τ
+

v∗1,j + v∗1,j+1

2

ρ∗12,j+1/2 − ρ∗12,j−1/2

h
= 0,

vn+1
1,j − v∗1,j

τ
+ v∗1,j

v∗1,j − v∗1,j−1

h
= 0.

Here

Kn
j+1/2 = CmR1T

(m2

m1
ρn
11,j+1/2 −

1
β3

ρn
21,j+1/2

)
, ρ1,j+1/2 = ρ11,j+1/2 + ρ12,j+1/2,

fn
j =

[Kn
j+1/2 + Kn

j−1/2

2
− CF

m2

m1

1
R2

(ρn
11,j+1/2 + ρn

11,j−1/2

2
ν1 +

ρn
12,j+1/2 + ρn

12,j−1/2

2
ν2

)] 2vn
1,j

ρn
1,j+1/2 + ρn

1,j−1/2

.

3.4. Results of the Numerical Experiment. The numerical experiment was performed for a fixed bed
1 m long with an inner diameter of 3 mm, which was filled with spherical particles (cenospheres) of radius of 80 μm
(the ratio of the inner to the outer radius was 0.91; the volume concentration of cenospheres was 0.6). The carrier
gas was argon, and its excess pressure at the bed entrance was 0.17 MPa; the gas pressure at the bed exit was
assumed to have the atmospheric value. The bed temperature varied from 273 to 800 K, the volume flow rate of
argon was approximately 0.476 cm3/sec at room temperature and atmospheric pressure, and the mass of the helium
portion was 0.2301 mg.

To compare the results of numerical and physical experiments, we determined the time evolution of the
helium flow rate at the bed exit. In the computations, the initial profile of the helium concentration at the bed
entrance was assumed to be rectangular.

Figure 3 shows the results calculated for a rectangular profile with different permeabilities Cm. With
increasing Cm, the character of the dependence M(t) becomes essentially different. For low permeabilities (Fig. 3a),
a certain decrease in the maximum concentration and a typical pattern with a smeared rear front of the peak are
observed. Such a character of the dependence M(t) in the physical experiment corresponds to slow diffusion of
helium inward the cenospheres at low temperatures or to a situation where the gas cannot penetrate inward the
particles (e.g., nitrogen). As the permeability increases (Fig. 3b), the curves are shifted toward higher times, which
is accompanied by strong smearing of the rear front of the peak. With a further increase in permeability, the
maximum of the concentration is shifted toward higher times of gas confinement. At high rates of the diffusion
process, the dependence M(t) becomes almost symmetric; the width of the pulse becomes almost twice the time
of confinement of the non-adsorbed species, which is determined by the ratio of the volume available for helium to
the volume between the cenospheres (equal to 2.13). Such a behavior of the system agrees with the theory of the
chromatographic process and is qualitatively consistent with the previous statistical calculations [3].

The calculated results were compared with experimental data obtained with a fraction of cenospheres 0.063 to
0.100 mm from the concentrate of fly ashes of the Moscow Cogeneration Plant No. 22 by the method of aerodynamic
separation (the bulk density was 0.18 g/cm3, the mean radius was 40 μM, and the calculated ratio of the inner to
the outer radius was 0.978). The length of the layer of cenospheres in the fixed bed with an inner diameter of 3 mm
was 1 m; the carrier gas was argon with a volume flow rate of 0.121 cm3/sec (Ta = 273 K and pa = 0.1013 MPa).
The permeability was changed by varying the bed temperature in the range of 300 to 850 K. The excess pressure of
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Fig. 3. Flow rate of helium at the bed exit for different permeabilities of the cenospheres Cm:
Cm = 0 (1), 10−7 (2), 3 · 10−7 (3), 10−6 (4), 5 · 10−6 (5), and 10−5 sec/m2 (6).
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Fig. 4. Dependences M(t) obtained in numerical calculations (1) and physical experiments (2) with
T = 216 (a) and 580◦C (b).

the carrier gas at the bed entrance was 0.06–0.17 MPa, and the gas pressure at the bed exit had the atmospheric
value.

As a quantitative comparison of the model with experimental data requires fitting of system parameters
(primarily, the permeability), it seems reasonable to perform the first comparisons in extreme cases, i.e., with very
high and very low permeabilities. For intermediate values, the model is expected to give a satisfactory description
of the system behavior. The dependences M(t) obtained in numerical calculations and physical experiments are
plotted in Fig. 4.

Comparisons of numerical and experimental data allow us to draw the following conclusions.
The model proposed offers an adequate description of the displacements of the peaks, the change in the peak

width, and the evolution of the peak shape with variation of permeability.
The model gives a satisfactory description of the displacement of the helium peak with permeability varied

from the minimum value (almost no diffusion) to the maximum value (close to equilibrium penetration of helium):
the displacement of the helium peak in terms of time is approximately 9 sec in calculations and 10 sec in experiments
(at T = 216 and 580◦C).
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The model ensures a satisfactory description of the general laws of the system behavior. A quantitative com-
parison of the calculated and experimental results allows determining the permeability of the cenosphere walls Cm

and the drag coefficient of the cenosphere medium CF [by Eq. (6)], which can be used for further calculations (in
our case, Cm = 5 · 10−9 sec/m2 and CF = 256.019 for T = 216◦C; Cm = 3 · 10−7 sec/m2 and CF = 303.112 for
T = 580◦C).

This work was performed within the Integration Project No. 112 of the Siberian Division of the Russian
Academy of Sciences entitled “Scientific justification of the diffusion-adsorption technology of helium extraction
from natural gas under unsteady conditions.”
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